Jucys–Murphy Elements and Weingarten Matrices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jucys–murphy Elements and Weingarten Matrices

We provide a compact proof of the recent formula of Collins and Matsumoto for the Weingarten matrix of the orthogonal group using Jucys–Murphy elements.

متن کامل

Symmetric Polynomials in Jucys-Murphy Elements and the Weingarten Function

We determine the coefficients of the classes of highest weight in the conjugacy class expansion of the monomial symmetric polynomials evaluated at the Jucys-Murphy elements. We apply our result, along with other properties of Jucys-Murphy elements, to give streamlined derivations of the first-order asymptotics and character expansion of the Weingarten function for the unitary group.

متن کامل

Complete Symmetric Polynomials in Jucys-murphy Elements and the Weingarten Function

A connection is made between complete homogeneous symmetric polynomials in Jucys-Murphy elements and the unitary Weingarten function from random matrix theory. In particular we show that hr(J1,...,Jn), the complete homogeneous symmetric polynomial of degree r in the JM elements, coincides with the rth term in the asymptotic expansion of the Weingarten function. We use this connection to determi...

متن کامل

Dagmar Barth - Weingarten

This paper presents the concept of the "participant perspective" as an approach to the study of spoken language. It discusses three aspects of this concept and shows that they can offer helpful tools in spoken language research. Employing the participant perspective provides us with an alternative to many of the approaches currently in use in the study of spoken language in that it favours smal...

متن کامل

On linear Weingarten surfaces

In this paper we study surfaces in Euclidean 3-space that satisfy a Weingarten condition of linear type as κ1 = mκ2 + n, where m and n are real numbers and κ1 and κ2 denote the principal curvatures at each point of the surface. We investigate the possible existence of such surfaces parametrized by a uniparametric family of circles. Besides the surfaces of revolution, we prove that not exist mor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Letters in Mathematical Physics

سال: 2009

ISSN: 0377-9017,1573-0530

DOI: 10.1007/s11005-009-0365-9